Graphs of Bounded Rank-width
نویسنده
چکیده
We define rank-width of graphs to investigate clique-width. Rank-width is a complexity measure of decomposing a graph in a kind of tree-structure, called a rankdecomposition. We show that graphs have bounded rank-width if and only if they have bounded clique-width. It is unknown how to recognize graphs of clique-width at most k for fixed k > 3 in polynomial time. However, we find an algorithm recognizing graphs of rank-width at most k, by combining following three ingredients. First, we construct a polynomial-time algorithm, for fixed k, that confirms rankwidth is larger than k or outputs a rank-decomposition of width at most f(k) for some function f . It was known that many hard graph problems have polynomial-time algorithms for graphs of bounded clique-width, however, requiring a given decomposition corresponding to clique-width (k-expression); we remove this requirement. Second, we define graph vertex-minors which generalizes matroid minors, and prove that if {G1, G2, . . .} is an infinite sequence of graphs of bounded rank-width, then there exist i < j such that Gi is isomorphic to a vertex-minor of Gj. Consequently there is a finite list Ck of graphs such that a graph has rank-width at most k if and only if none of its vertex-minors are isomorphic to a graph in Ck. Finally we construct, for fixed graph H, a modulo-2 counting monadic secondorder logic formula expressing a graph contains a vertex-minor isomorphic to H. It is known that such logic formulas are solvable in linear time on graphs of bounded clique-width if the k-expression is given as an input. Another open problem in the area of clique-width is Seese’s conjecture; if a set of graphs have an algorithm to answer whether a given monadic second-order logic formula is true for all graphs in the set, then it has bounded rank-width. We prove a weaker statement; if the algorithm answers for all modulo-2 counting monadic secondorder logic formulas, then the set has bounded rank-width.
منابع مشابه
Thread Graphs, Linear Rank-Width and Their Algorithmic Applications
Many NP-hard graph problems can be efficiently solved on graphs of bounded tree-width. Several articles have recently shown that the so-called rank-width parameter also allows efficient solution of most of these NP-hard problems, while being less restrictive than tree-width. On the other hand however, there exist problems of practical importance which remain hard on graphs of bounded rank-width...
متن کاملClasses of graphs with small rank decompositions are X-bounded
A class of graphs G is χ-bounded if the chromatic number of graphs in G is bounded by a function of the clique number. We show that if a class G is χ-bounded, then every class of graphs admitting a decomposition along cuts of small rank to graphs from G is χ-bounded. As a corollary, we obtain that every class of graphs with bounded rank-width (or equivalently, clique-width) is χ-bounded.
متن کاملRank-Width and Well-Quasi-Ordering
Robertson and Seymour (1990) proved that graphs of bounded tree-width are well-quasi-ordered by the graph minor relation. By extending their arguments, Geelen, Gerards, and Whittle (2002) proved that binary matroids of bounded branch-width are well-quasi-ordered by the matroid minor relation. We prove another theorem of this kind in terms of rank-width and vertex-minors. For a graph G = (V,E) a...
متن کاملOn Low Rank-Width Colorings
We introduce the concept of low rank-width colorings, generalizing the notion of low tree-depth colorings introduced by Nešetřil and Ossona de Mendez in [25]. We say that a class C of graphs admits low rank-width colorings if there exist functions N : N→ N and Q : N→ N such that for all p ∈ N, every graph G ∈ C can be vertex colored with at most N(p) colors such that the union of any i ≤ p colo...
متن کاملRank-width and Well-quasi-ordering of Skew-Symmetric or Symmetric Matrices (extended abstract)
We prove that every infinite sequence of skew-symmetric or symmetric matrices M1, M2, . . . over a fixed finite field must have a pair Mi, Mj (i < j) such that Mi is isomorphic to a principal submatrix of the Schur complement of a nonsingular principal submatrix in Mj , if those matrices have bounded rank-width. This generalizes three theorems on well-quasi-ordering of graphs or matroids admitt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005